Hinweis: Um die korrekte Darstellung der Seite zu erhalten, müssen Sie beim Drucken die Hintergrundgrafiken erlauben.

Advanced Methods of Power Load Forecasting

Objektkategorie:
Elektronische Ressource
Verlag:
MDPI - Multidisciplinary Digital Publishing Institute
Veröffentlichungsort:
Basel
Entstehungszeit:
2022
Umfang, Illustration, Format:
1 Online-Ressource (128 p.)
Sprache:
Nicht zu entscheiden
Bereitstellende Institution:
Abstract:
This reprint introduces advanced prediction models focused on power load forecasting. Models based on artificial intelligence and more traditional approaches are shown, demonstrating the real possibilities of use to improve prediction in this field. Models of LSTM neural networks, LSTM networks with a SESDA architecture, in even LSTM-CNN are used. On the other hand, multiple seasonal Holt-Winters models with discrete seasonality and the application of the Prophet method to demand forecasting are presented. These models are applied in different circumstances and show highly positive results. This reprint is intended for both researchers related to energy management and those related to forecasting, especially power load
Objekttext:
English
Universität Erfurt
Forschungsbibliothek Gotha
Schloss Friedenstein
Schlossplatz 1
99867 Gotha
+49 361 737-5540
bibliothek.gotha(at)uni-erfurt.de
Datensatz angelegt am:
2023-04-12
Zuletzt geändert am:
2023-01-29
In Portal übernommen am:
2023-04-12