Advanced Computational Methods for Oncological Image Analysis
Person/Institution:
Verlag:
MDPI - Multidisciplinary Digital Publishing Institute
Veröffentlichungsort:
Basel, Switzerland
Entstehungszeit:
2021
Umfang, Illustration, Format:
1 Online-Ressource (262 p.)
Sprache:
Englisch
Bereitstellende Institution:
Weitere Objektinformationen
Abstract:
[Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.]
Objekttext:
English
Zugriff und Nutzungsmöglichkeiten
Kontaktinformationen
Universität Erfurt
Forschungsbibliothek Gotha
Schloss Friedenstein
Schlossplatz 1
99867 Gotha
+49 361 737-5540
bibliothek.gotha(at)uni-erfurt.de
Forschungsbibliothek Gotha
Schloss Friedenstein
Schlossplatz 1
99867 Gotha
+49 361 737-5540
bibliothek.gotha(at)uni-erfurt.de
Administrative Angaben
Datensatz angelegt am:
2023-04-13
Zuletzt geändert am:
2022-03-10
In Portal übernommen am:
2023-04-13
Feedback
Unsere Datensätze befinden sich in stetiger Weiterentwicklung. Wenn Sie zusätzliche Informationen zu diesem Objekt oder einen Fehler entdeckt haben, dann schreiben Sie uns. Informationen zum Datenschutz