Hinweis: Um die korrekte Darstellung der Seite zu erhalten, müssen Sie beim Drucken die Hintergrundgrafiken erlauben.

AI and Machine Learning for Network and Security Management

Object category:
Elektronische Ressource
Publisher:
John Wiley & Sons, Incorporated
Place of publication:
Newark
Date:
2022
Extent, illustration, format:
1 online resource (338 pages)
Language:
Englisch
Abstract:
Intro -- Table of Contents -- Title Page -- Copyright -- Author Biographies -- Preface -- Acknowledgments -- Acronyms -- 1 Introduction -- 1.1 Introduction -- 1.2 Organization of the Book -- 1.3 Conclusion -- References -- 2 When Network and Security Management Meets AI and Machine Learning -- 2.1 Introduction -- 2.2 Architecture of Machine Learning‐Empowered Network and Security Management -- 2.3 Supervised Learning -- 2.4 Semisupervised and Unsupervised Learning -- 2.5 Reinforcement Learning -- 2.6 Industry Products on Network and Security Management -- 2.7 Standards on Network and Security Management -- 2.8 Projects on Network and Security Management -- 2.9 Proof‐of‐Concepts on Network and Security Management -- 2.10 Conclusion -- References -- Notes -- 3 Learning Network Intents for Autonomous Network Management* -- 3.1 Introduction -- 3.2 Motivation -- 3.3 The Hierarchical Representation and Learning Framework for Intention Symbols Inference -- 3.4 Experiments -- 3.5 Conclusion -- References -- Notes -- 4 Virtual Network Embedding via Hierarchical Reinforcement Learning1 -- 4.1 Introduction -- 4.2 Motivation -- 4.3 Preliminaries and Notations -- 4.4 The Framework of VNE‐HRL -- 4.5 Case Study -- 4.6 Related Work -- 4.7 Conclusion -- References -- Note -- 5 Concept Drift Detection for Network Traffic Classification -- 5.1 Related Concepts of Machine Learning in Data Stream Processing -- 5.2 Using an Active Approach to Solve Concept Drift in the Intrusion Detection Field -- 5.3 Concept Drift Detector Based on CVAE -- 5.4 Deployment and Experiment in Real Networks -- 5.5 Future Research Challenges and Open Issues -- 5.6 Conclusion -- References -- Note -- 6 Online Encrypted Traffic Classification Based on Lightweight Neural Networks* -- 6.1 Introduction -- 6.2 Motivation -- 6.3 Preliminaries -- 6.4 The Proposed Lightweight Model.
Object text:
Description based on publisher supplied metadata and other sources
Universität Erfurt
Forschungsbibliothek Gotha
Schloss Friedenstein
Schlossplatz 1
99867 Gotha
+49 361 737-5540
bibliothek.gotha(at)uni-erfurt.de
Created:
2023-04-12
Last changed:
2022-11-04
Added to portal:
2023-04-12