Advanced Biometrics with Deep Learning
Person/Institution:
Publisher:
MDPI - Multidisciplinary Digital Publishing Institute
Place of publication:
Basel, Switzerland
Date:
2020
Extent, illustration, format:
1 Online-Ressource (210 p.)
Language:
Englisch
Providing institution:
Additional information
Abstract:
Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others
Object text:
English
Access and usage options
Contact
Universität Erfurt
Forschungsbibliothek Gotha
Schloss Friedenstein
Schlossplatz 1
99867 Gotha
+49 361 737-5540
bibliothek.gotha(at)uni-erfurt.de
Forschungsbibliothek Gotha
Schloss Friedenstein
Schlossplatz 1
99867 Gotha
+49 361 737-5540
bibliothek.gotha(at)uni-erfurt.de
Administrative details
Created:
2023-04-14
Last changed:
2021-11-25
Added to portal:
2023-04-14
Feedback
Our data sets are in constant development. If you have additional information about this object or discovered an error, please write to us. Information on privacy policy